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In this talk …
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• The what and why of trustworthy data science

• Transparency: fighting misinformation with 
explanation

• Fairness: unbiased opinion summarization

• Responsibility: responsible 
information recommendation

• Discussions and conclusion
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The what and why for trustworthy data science
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What is trustworthy data science?

• User trust is
the ultimate testimony 
for successful data 
science and AI.

• What are the qualities 
of a trustworthy AI 
system?

Source: Requirements of Trustworthy AI | Futurium | European commission
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Why trustworthy data science?
-- data, data, biased data
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Why trustworthy data science?
-- data, data, unlimited data
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Why trustworthy data science?
- data, data, misinformation data
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Why trustworthy data science?
- but, users, users, credulous users

RMIT University xiuzhen.zhang@rmit.edu.au 8

mailto:xiuzhen.zhang@rmit.edu.au


So, what can we work on NOW?
Trustworthy 
data science 
technologies 
are --

Transparent: automatic 
prediction with explanation,

Fair: generate information free 
of bias, and

Responsible: ensure positive 
social impact and responsibility.
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Combating misinformation with explanation
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• Tian, L., Zhang, X. and Lau, J.H., 2023.CMA-R: Causal Mediation Analysis for 
explaining rumour detection. 2023. In submission.

• Tian, L., Zhang, X.J. and Lau, J.H., 2022,July. DUCK: Rumour detectionon social 
media by modelling user and comment propagationnetworks. In Proceedingsof the 
2022 Conference of the North AmericanChapterof the Association for Computational 
Linguistics: Human Language Technologies (pp. 4939-4949).

• Tian, L., Zhang, X. and Lau, J.H., 2021.Rumour detectionvia zero-shot cross-lingual 
transfer learning. In Machine Learningand Knowledge Discovery in Databases. 
Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 
13–17, 2021, Proceedings, Part I 21 (pp. 603-618). Springer International Publishing.

• Tian, L., Zhang, X., Wang, Y. and Liu, H., 2020.Early detectionof rumours on twitter via 
stance transfer learning. In Advances in InformationRetrieval: 42nd European 
Conferenceon IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, 
Proceedings, Part I 42 (pp. 575-588). Springer International Publishing.
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Automatic rumour detection on social media
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The explainability issue
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DUCK: rumour detection on social media by modelling
user and comment propagation networks
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Results
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How to open the DUCK black box?

Causal mediation analysis
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Causal mediation analysis of DUCK for explanation
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Results
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• Neural networks modelling of tweets and their 
conversation structure is effective for automatic 
rumour detection.

• Causal mediation analysis can open
the blackbox of neural networks to identify 
critical tweets and tokens to explain the model 
predictions.
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Summary
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Reducing bias for fair opinion summarization
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• Huang, N., Fayek, H. and Zhang, X., 2023. The bias in opinion
summarization from pre-training to adaptation: a case study in
political bias. In submission.

• Tang, A., Dinh, M., and Zhang, X., 2023. Aspect-based
key point analysis for quantitative summarization of reviews. 
In submission.

• Huang, N. and Zhang, X., Evaluation of Review Summaries via
Question-Answering. ALTA 2021.
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Opinion summarization
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The challenges

The input data bias The algorithmic bias in models
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Our goal: fair summarization of opinions
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Measuring the political bias in Twitter summarization
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Results
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Review summarization: the issue
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Our goal: Key point-based quantitative summarization of
reviews
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ABKPA:
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Results on Yelp reviews
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• Large language models have inherent bias and 
can propagate into summarization of social 
media opinions.

• Lighter fine-tuning strategies imply less distortion 
of the political stance in source input.

• Quantitative summarization is effective for 
including diverse opinions for review 
summarization.
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Summary
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Information recommendation
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Responsible information recommendation
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• Wang, S., Zhang, X., Wang, Y., Liu, H., and Ricci, F., 2023. Trustworthy 
Recommender Systems. ACM Transactions on Intelligent Systems and 
Technology. To appear.

• Wang, S., Liu, N., Zhang, X., Wang, Y., Ricci, F. and Mobasher, B., 2022. Data 
Science and Artificial Intelligence for Responsible Recommendations . KDD 
2022.

• Wang, S., Xu, X., Zhang, X., Wang, Y. and Song, W., 2022, April. Veracity-aware 
and Event-driven Personalized News Recommendation for Fake News
Mitigation In Proceedings of the Web Conference.
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Challenges: misinformation, bias and moral value
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Our goal: Personalized, responsible recommendation of 
information items

Responsible recommender 
systems have the objective 
of promoting moral value as 
well as personal value for 
users.
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Building trustworthy recommender systems
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Research questions

• How to learn veracity-aware item representation?

• How to recommend relevant news?

• How to only recommend true news when the veracity of
candidate news is unknown?

• How to model the transition over latent events while 
avoiding the interference from veracity-related 
information (e.g., news content style)?
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Rec4Mit: Veracity-aware news recommendation*
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Results: recommendation accuracy + ratio of true news
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Case studies: the generated recommendation results
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HDInt: unbiased and true news recommendation
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Results: recommendation accuracy, fairness and true
news ratio
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• We have proposed end-to-end frameworks for 
unbiased, truth-driven personalized news 
recommendation.

• Experiments on political news and entertainment
news on Twitter show their performance in terms
of recommendation accuracy, fairness score and
true news ratio.
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DISCUSSIONS AND 
CONCLUSION
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Discussion: Generative AI can be misused
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How to detect AI-generated contents?
Machine-generated contents are difficult to 
identify, even for humans.
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• Gagiano, R. and Tian, L., 2023. A prompt in the right direction: prompt-
based classification of machine-generated text detection. ALTA'2023. To 
appear.

• Gagiano, R., Fayek, H., Kim, M.M.H., Biggs, J. and Zhang, X., 2023. 
Automated text identification shared task – Team OD-21. IberLEF 
2023. Jaen, Spain.

• Gagiano, R., Kim, M.M.H., Zhang, X.J. and Biggs, J., 2021, December. 
Robustness analysis of grover for machine-generated news detection. 
In Proceedings of the The 19th Annual Workshop of the Australasian 
Language Technology Association (pp. 119-127)

RMIT University xiuzhen.zhang@rmit.edu.au 45

Some preliminary research on detecting AI-
generated contents
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A challenge
With the rapid development 
of generative AI, how to 
train systems to cope with 
the novel, generated 
contents that are out-of-
distribution.
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• Xu X., Zhang, X., and Deng, K., 2022. Mirage: 
An ad-hoc social network for research on 
responsible information recommendation. 
https://joinmirage.online/
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Discussion: Can responsible 
recommendation positively change user 
information behaviour?
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Vulnerable users
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A real online information environment
Mirage: https://joinmirage.online/
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Conclusions

Trustworthy data science is not a choice but a necessity.

Towards trustworthy data science, research has focused 
on model transparency and explanability, algorithmic 
fairness for making automatic decisions, as well as
the social impact and responsibility for end users.

The rapid development of generative AI presents 
unprecedented challenges to data science and requires 
significant resarch efforts.

RMIT University xiuzhen.zhang@rmit.edu.au 50

mailto:xiuzhen.zhang@rmit.edu.au


Acknowledgements

RMIT University xiuzhen.zhang@rmit.edu.au 51

mailto:xiuzhen.zhang@rmit.edu.au


Contact: xiuzhen.zhang@rmit.edu.au

http://www.xiuzhenzhang.org/
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