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Al System

Al system = Code + Data

(model/algorithm)
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What 1s Data-Centric Al?

“Data-centric Al (DCAI) is the discipline of systematically engineering the data used to

build an Al system.” — —-Andrew Ng
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Fig. 1. General comparison between (a) model-centric Al and (b) data-centric Al
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Why Data-Centric Al matters

When model design becomes mature, the significance of both the size and quality of the
data increases.

GPT-1 - 4.8GB (unfiltered) data
GPT-2 - 40GB human-filtered data
Similar model
architectures 1 ‘

GPT-3 <— 570GB data filtered from 45TB raw data

4

ChatGPT/GPT-4 «— Human demonstrations and annotations
. \/
Data size T
Data quality T

% Core idea: Engineering data to enable great “availability and quality” for serving model-related ML tasks.

ALISHIAINN HLI4dId

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Why Data-Centric Al matters

An example:

Inspecting steel sheets for defects

Baseline 76.2% 75.68% 85.05%

Model-centric +0% +0.04% +0.00%

(76.2%) (75.72%) (85.05%)

Examples Data-centric +16.9% +3.06% +0.4%
gl adtacts (93.1%) (78.74%) (85.45%)

Data-centric improves more than model-centric!

[1] A Chat with Andrew on MLOps: From Model-centric to Data-centric Al: https://www.youtube.com/watch?v=06-AZXmwHjo

CRICOS: 0023BE | TEQSA: PRV12076
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Graphs: Atypical & vital instantiation in DCAI

A Graph has nodes/vertices and edges:
* Nodes/vertices

— a paper in the citation network
* Edges

— connections between papers

Graphs have the ability of:

®* Representing complex structural
relationships among massive diverse
entities in the real world

Example: Citation Network [

[1] Valtonen, Teemu, et al. "The nature and building blocks of educational technology research." Computers in Human Behavior 128 (2022): 107123.

CRICOS: 00233E | TEQSA:
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Graphs in real-world applications
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Graph Neural Networks (GNNs)

17— |label

3 E)

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 1: GraphSage pioneered powerful aggregation techniques for message passing in GNNs.

: .
Xp «—Cb X Xp Xe / Xps—Moe  Xe
.............. \‘ """""
cp 1/ \Cz, > Ol \a'be """"" s Me
Xd Xe Xd X X4 Xe
Convolutional Attentional Message-passing

Figure 2: Example dataflows in three types of GNNs.

CRICOS: 0023E | TEQSA: PRV12076
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Graph Neural

Networks (GNNs)

e e e T T e e T T T e e e =T T e e e T T T = ———

1

Skip !

_.:' Sampling Conv/Recurrent Pooling \:
i Operator Operator Operator
I e VT A e - U /7
Input — e Output
Node
Embedding
GNN GNN
i — — —
::> Layer Layer I::> ke ‘ :>
Embedding
Graph
— Embedding

1
1
1

1. Find graph structure.}

2. Specify graph type and scale.

4. Build model using computational modules.

The general design pipeline for a GNN model.

\

/ Loss Function
Training Setting Task
« Supervised * Node-level
* Semi-supervised * Edge-level
Unsupervised * Graph-level

§

3. Design loss function.

! I I Strong focus on model design

--------------------------------------------------------------------------------------------------

o ———

——————— T T e e T T e e T T S ——— o
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Look at a Bigger Picture...

X

A

A

Graph data

[Data-level] The important role
of graph-structured data is

overlooked (e.g., scale and types)

—————————

————

7D
&)
Training
GNN Model Tunnin
Design 9 1
11 11
Evaluation -— Evaluation
(7N
&
Training

____________________________________________

X  [Model-level] Human manually
designed GNNs cannot well adapt

specific graph data and tasks

l

Deployment

X  [Deployment-level] Difficult to
evaluate well-developed GNNs on

real-world test graph data

CRICOS: 0023E | TEQSA: PRV12076
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Why Data-Centric Graph ML matters?

s Taking graph OOD detection as example:

Downstream

Tasks
Downstream

Task Prediction

—D

Density ~ 00D
GNN ) / \
for OOD ]

Score
OOD Detection
Prediction

00D Detection
Task

Original Graph

(a) Typical retraining-based graph OOD detection methods

Downstream
Task Prediction

Downstream
Tasks

Density / 00D

00D Detection
Task (

: Score
Amplified Graph

OOD Detection
Prediction

(b) Our proposed data-centric framework for graph OOD detection.

1D 00D Metric || GCLs | GClis+ Improv.

AUCT || 6297 | 73.J6 +17.14%
ENZYMES | PROTEIN | AUPR T|| 62.47 | 75.27 +20.49%
FPR95 ||| 93.33 | 88.33 -5.36%

AUCT || 80.52 | 83.84 +4.12%
AUPRT|| 7443 | 80.16 +7.70%
FPR95 ||| 38.67 | 38.33 -0.88%

IMDBM IMDBB

AUCT || 75.00 | 97.31 +29.75%
AUPR T|| 62.41 97.17  +55.70%
FPR95 || | 47.50 | 15.00 -68.42%

BZR COX2

Model-centric GML method ‘/

t¥ Data-centric GML
method and improvements

Guo, Y., Yang, C., Chen, Y., Liu, J., Shi, C., & Du, J. (2023). A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability.

CRICOS: 0023E | TEQSA: PRV12076
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What We Need is...

systematically consider the entire pipeline of building “production-ready GNN models” from

iIndustrial perspective in real-world application scenarios.

9 Automated GNN design 3/

" o Training

| - - : >

[ N [

| ‘N ° : | _ 1
Z;'"-..? - M '::z\/;f ﬂl\ th:::;‘deir: Tunning — @

- - /i I /i I . Deployment |
Graph data engineering n L M e s?
— .
@ Full graph data-centric exploration Evalustion Evalustion @) Production-ready GNNs
@ in service
"t/

Training

CRICOS: 0023E | TEQSA:
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Automated Graph MLOps
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« Graph data scales

T = (X, A,Y") :

Small-scale graph

Large-scale graph

Heterophilic Graphs

Multi-relational Graphs

\/ Distribution Shift \;/
/ 1™ —
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\ o
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Graph §
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1 1
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] 1
! -
with node labels inference
ACC=80%
= Training Stage
Unseen Test Graph T
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GNNj in-service
1 inference
? without node labels
How it performs?

= Online Inference Stage
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Automated Graph MLOps--Data-Centric Focus

Automated Graph Machine Learning Operations (MLOps) Workflow

Graph data types: complexity and diversity

Graph Data Engineering

|

h) Graph data scales{ large graph data quantity

© Automated GNN Model Design

|

| Using graph neural architecture search (NAS) to

automatically demlnpm task-driven GNNs

GNN Model Deployment

Understanding well-developed GNNs' performance

when servi - real-world unseen test graphs

CRICOS: 0023E | TEQSA:
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Automated Graph MLOps--Data-Centric Focus

Data-centric graph machine
learning (DC-GML) aims to:

Process, analyze, and understand
graph data in entire lifecycle

Enhancing the quality
Uncovering the insights

Developing comprehensive
representations

Working collaboratively with graph
ML models under graph MLOps

Data-centric Graph ML Review & Outlook

How To Enhance Graph Data

Availability and Quality?

______________________________

..............................

Graph Data Improvement

Graph Data Maintenance

How To Learn From Graph Data

With Limited-availability and Low-quality?

o IS |
J - | j ey
Graph MLOps

‘
[

1
kS

Graph Data Exploration

_______

.......

Grap

h Data Exploitation

Graph Data Collection

How To Build Graph MLOps System: The Graph Data-centric View?

Survey paper: Towards Data-centric Graph Ma

Github collection:

chine Learning: Review and Outlook

CRICOS: 0023E | TEQSA: PRV12076
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Graph Data Scale Issue

In real-world application,

a) Graph data scale can be very large;

b) Modelling large-scale graphs hinders GNN development with heavy costs.

Table 1: Model serving space

Datasets Model size || [Training graph size | Training feature size | [Total serving size
Arxiv 1.4AMB 5.9MB 46.5MB 53.8MB

Reddit 7.6MB 86.0MB 370.7MB 164.3MB
Product 4.8MB 87.2MB 78.6MB 170.6MB
Amazon2M | 3.0MB 485.4MB 684.0MB 1.17GB

Il Model size << Graph data size

CRICOS: 0023E | TEQSA:
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Graph Data Scale Issue

Training optimal GNN models on large-scale graphs would:

a) Require repeat training & finetuning for optimality

b) Heavy costs on: graph data storage, computation, and memory

>

repeat
training & tuning.

— o o o o

Q

153,932 training nodes

input layer

hidden
layers

%\

F
<

;’»Zz
AN

output layer

Graph Convolutional Networks (GCN)

< HH -

CRICOS: 0023E | TEQSA:
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Solution: Graph Condensation

aim to reduce the size of a large-scale graph by synthesizing a small-scale condensed graph

- > the small-scale condensed graph achieves comparable test performance as the large-scale

graph when training the same GNN model.

1
i Graph
P I T =(XAY)
Test accuracies | : 1 e : Test accuracies 1
GCN: 93.9% I | Condense 1 | GCN: 89.4% H
SGC: 93.5% ! 1 I I SGC: 89.6% :
APPNP: 94.3% : ! : ‘ I APPNP: 87.8% 1
GraphSAGE: 93.0% | : | : GraphSAGE: 89.1% |
| 1 \ q 7 :
\ N e - —— - 1
1 é
1
ini ini | Condensati
153,932 training nodes 154 training nodes : ondensation
1

T = (X, A.Y")

-

ﬂ, GNN¢e,)
train

—_—> GNN¢o,)

test
— ACC,

T test ¢ &
Comparable?

test ?
— ACC

7"
T test

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data. Advances in

Neural Information Processing Systems (NeurlPS), 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Benefits of Graph Condensation

Using condensed graph as substitution to facilitate GNN training:

 Alleviated graph data storage/computation/memory costs

*» Practical applications of GC?
* Graph Neural Architecture Search (GraphNAS)

By searching on a small-scale condensed graph, accelerating new GNN architecture development in GraphNAS

"R Layer Structure

1 GCN 2 GCN ADD relu @
oy ahy ahy aiy ahy oy

[
[ 0]

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data. Advances in
Neural Information Processing Systems (NeurlPS), 2023.

* Privacy Protection

 Adversarial Robustness

Example: Graph NAS

ALISHIAINN HLI4dId

CRICOS: 0023E | TEQSA: PRV12076
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The Proposed: Structure-free Graph Condensation

Graph
TF=(XAY) train test
— ——| GNN@p |~ > ACC, —
test | » [Existing works :
Comparable?
? T=XAY)=T=X,AY'), GC
test
GNN(,) —» ACC
LR
Comparable?
B A » Our SFGC:
.E' train T test .
> @m foNen JZ o e ]T (X.AY)=»Ss=XLY)=5=(X7), SFGC-}
Structure-free . N °

§=(X7

—

Condensation

» Our Solution:

v/ Structure-free paradigm

v/ Long-range parameter matching schema

» « Only synthesizes a small scaled node set to train a GNN/MLP

»

» « Implicitly encodes topology structure into node attributes

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data. Advances in
Neural Information Processing Systems (NeurlPS), 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Framework: Structure-free Graph Condensation

Condensing large-scale graph into only node set without structures!
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Stage2: Condensed Graph-free Data Evaluation ®)
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_*
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(==Y

Evaluation E .
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¥Ygnt

Select optimal § with
the smallest "-gn.r

Condensed graph-free data §

o Back Propagation & Update

Figure 1. Overall pipeline of the proposed Structure-Free Graph Condensation (SFGC) framework

Input: large-scale T, GNN(T)

Output: small-scale condensed S

« S1:train expert GNN on large-scale T

+ S2-3: long-term meta training

trajectory matching with condensed S

* S4: update S

« S5: dynamically evaluates S with a
GNTK-based score

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data. Advances in
Neural Information Processing Systems (NeurlPS), 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Results: Structure-free Graph Condensation

Table 1: Node classification performance (ACC%+std) comparison between condensation methods
and other graph size reduction methods with different condensation ratios. (Best results are in bold, and the

second-bests are underlined.)

. Other Graph Size Reduction Baselines Condensation Methods —Whole
Datasets Ratio (r) taset
Coarsening 13] Random (31] Herding (31] K-Center [28) DC-Graph 42 GCOND-X j18j GCOND [i8]| SFGC (ours) atase
0.9% 52.2+04 54.444.4 57.1+15 524428 66.8+1.5 71.4+0.8 70.5+1.2 71.4+05
Citeseer 1.8% 59.0+0.5 64.2+1.7 66.7+1.0 64.3+1.0 66.9+0.9 69.8+1.1 70.6+0.9 72.4+0.4 71.7+0.1
3.6% 65.3+0.5 69.1+0.1 69.0+0.1 69.1+0.1 66.3+1.5 69.441.4 69.841.4 70.6+0.7
1.3% 31.2+0.2 63.6+3.7 67.0+1.3 64.0+2.3 67.3+1.9 75.9+1.2 79.841.3 80.1+0.4
Cora 2.6% 65.24+0.6 T2.8+1.1 73.4+1.0 73.2+41.2 67.6+3.5 75.7+0.9 80.1+0.6 81.7+0.5 1.24+0.2
5.2% 70.6+0.1 76.8+0.1 76.840.1 76.7+0.1 67.7+2.2 76.0+0.9 79.34+0.3 81.6+0.8
0.05% 35.4+0.3 47.143.9 524418 47.243.0 58.6+0.4 61.3+05 592411 65.5+0.7
Ogbn-arxiv ~ 0.25% 43.5+0.2 57.3+1.1 58.6+1.2 56.8+0.8 59.9+0.3 64.2+0.4 63.2+0.3 66.1+0.4 l.4+0.1
0.5% 50.440.1 60.0+0.9 60.4+0.8 60.34+0.4 59.5+0.3 63.1+0.5 64.0+0.4 66.8+0.4
0.1% 41.9+0.2 41.8+2.0 42.5+1.8 42.0+0.7 46.3+0.2 45.940.1 46.5+0.4 46.6+0.2
Flickr 0.5% 44 5+0.1 44.04+0.4 43.9+0.9 43.240.1 459+0.1 45.0+0.2 47.1+0.1 47.0+0.1 47.240.1
1% 44 .6+0.1 44 .6+0.2 44 4406 44, 140.4 45.8+0.1 45.0+0.1 47.1+0.1 47.1+0.1
0.05% 40.9+0.5 46.1+4.4 53.1+25 46.6+2.3 88.2+0.2 88.4+0.4 88.0+1.8 89.7+0.2
Reddit 0.1% 42.8+0.8 58.0+2.2 62.7+1.0 53.0+3.3 89.5+0.1 89.3+0.1 89.6+0.7 90.0+0.3 3.9+0.0
0.2% 47.440.0 66.3+1.9 71.0+1.6 58.5+2.1 90.5+1.2 88.8+0.4 90.1+0.5 90.3+0.3

them), illustrating the high quality and expressiveness of the condensed graph-free data synthesized by our SFGC

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-free Data. Advances in

Neural Information Processing Systems (NeurlPS), 2023.

L

* Generally, SFGC achieves the best performance on the node classification task with 13 of 15 cases (five datasets and three condensation ratios for each of

CRICOS: 0023E | TEQSA: PRV12076
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Homophilic vs. Heterophilic Graphs

\\/\u
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g
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(a) Homophilic Graph (b) Heterophilic Graph

Nodes with similar features or same class labels are linked together. Linked nodes have dissimilar features and different class labels.
+ E.g., in citation networks, a study usually cites reference papers from + E.g., in online transaction networks, fraudsters are more likely to build
the same research. connections with customers instead of other fraudsters.

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs.” Proceedings of the ACM Web Conference 2023. 2023.

CRICOS: 0023E | TEQSA: PRV12076
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o) Homophilic GNNs Unsuitable for Heterophily

EG
- / E\E | /T
S\ E / II\EI /71‘?5 / E\E/
Bt
F
;% o el =
bidden B B Foer
tigens (a) Homophilic Graph
//
input layer output layer
\ Graph Convolutional Networks (GCN)

% Core idea of GNNs: Message Passing (MP) over neighbors

‘. (b) Heterophilic Graph

But on heterophilic graphs, neighbors might not in the same class!

ALISHIAINN HLI4dIdO

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs.” Proceedings of the ACM Web Conference 2023. 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Question

Is that possible to design

O heterophily-friendly GNNs &
® automatically &
@ driven by heterophilic graphs?

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs.” Proceedings of the ACM Web Conference 2023. 2023.
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Solution: Graph Neural Architecture Search (NAS)

* Human-designed—Non-automated:
X Too much human-effort cost

X Model performance heavily relies on expertise

ot

A promising solution...

s Graph Neural Architecture Search (NAS) — Automated.:
v Relieving human efforts

v Powerful GNN models driven by data and tasks

e p\
Layer Structure
1 GN 2 GCN ADD relu @.I
T afiy oy ey uiy afiy r-L--
e e [oemem=s pm=se= 4DD}
I B [ S , (2640, ---I‘ [0] [0]
S ) W
L0 i1 h jlehit L j Readii [o] [0
L Graph Neural Architecture Search (GNAS) )
LI\ A s — )
& ®) s SANE Graph :
b Search :
=E—@ = G
Human-designed GNN
(b) = . AU
AGG ! ]
@ ® Search spece; [y - htl;y’e}”z”
ed L5 : }ﬂ, aggreg
o ‘\\ S E 1
@ 6 @ @ ! ‘[‘a
L0 A B P |- supernet ||
® @0 ®@ ® 6 6 e I
\_ Search to Aggregate Neighborhood (SANE) )

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs.” Proceedings of the ACM Web Conference 2023. 2023.

CRICOS: 0023E | TEQSA: PRV12076
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Solution: Graph Neural Architecture Search (NAS)

Despite promising performance, the mainstream graph NAS is limited by

» Graph-structured data level:
« Simple-relational graph-structure data == . Real-world graphs are complex and diverse

* Homophily assumption of graphs — *  Heterophily?

» NAS algorithm level:

* Coarse-grained GNN search space Simple ensemble learning of existing GNNs

| |

« Simple search strategy « Require specific search strategy

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs.” Proceedings of the ACM Web Conference 2023. 2023.

ALISHIAINN HLI4dId

CRICOS: 0023E | TEQSA:
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Our Proposed: Auto-HeG

--- your good choice to automatically construct heterophily-aware GNNSs!

By fully exploring Graph Neural Architecture Search (GraphNAS) for heterophilic graphs:

..................................................................................................................................

Auto-HeG has the capability to:

=
SN
Layer #L =

Auto-HeG Supernet

« Automatically customize GNNs for heterophilic graphs

hr(;L) v

_’< Omac >

| Classifier |

. Layer #l

- T
hy, (0©®®]:a,

¥y, @008
i" e
h, (000®]
~ l ~
l
|
h(l)— hv [E
Y m, (EEED)

UPDATE

Ego-neigh. Sep. & Diverse MP

« Comprehensive GNN architecture components friendly to heterophily >“Heterophilic Search Space”

« Efficiently & Effectively derive data-drive and graph-specific GNNs = “Heterophilic Search Strategy”

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs." Proceedings of the ACM Web Conference 2023. 2023.
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In-depth Look at Auto-HeG

* Heterophilic Search Space A Heterophilic Search Strategy

Table 1: Heterophilic search space details of the proposed : (1) Progressive Heterophilic Supernet Training
Auto-HeG. ‘homo. and ‘hete’ indicate homophily-related and heterophily-related

aggregation functions, respectively.

Algorithm 1 Progressive Heterophilic Supernet Training

Search Space | Modules | Operations Require: Initial heterophilic supernet Sp, number of shrinking
| Neighbors | {442 .- AK} iterations T, number of candidate operations C to be dropped
Micro-level : . .
SAGE, SAGE_SUM, SAGE_MAX,GCN, GIN, GAT, GAT_SYM, : leration
‘ o homo {GAT COS, GAT_LIN, GAT_GEN_LIN, GeniePATH} : pert ont
AGG e e Ensure:| Compact heterophilic supernet S..

| | hete. | { GCNII, FAGCN, GPRGNN, SUPERGAT, GCN_CHEB, APPNP, SGC}

1: Let Sc — SO;

UPDATE

Auto-HeG Supernet

Macro-level | Opmac | [_skip,|_zero, l_concat,l_max, [_Istm 2. while ¢t < T do
. Layer #/ 3:  Training S, for several epochs as Eq. (6) and/(7);
: MCTTTI 4: Rankm’g the magmt.udes of the arcl’ntectur o; .
) ; R 1 P 5:  Dropping C operations from S e smallest C archi-
l JAZ v .. AK | M= b, mfmhe _ tecture weights;
; i P @ ¢: end while
I H
EIR0) R |0 | Rl
- 5'5 = 56 s > OMAC ! l
g g 7 ! 5
= = = _ L | CIXXY
T m (EEEE) (2) Heterophily Guided Architecture Selection

Ego-neigh. Sep. & Diverse MP

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs." Proceedings of the ACM Web Conference 2023. 2023.

ALISHIAINN HLI4dId



W

ALISHIAINN HLI4dId

Auto-HeG Designed Heterophilic GNNs
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Experiments of Auto-HeG

--High-heterophily Graphs

Table 2: Performance (ACC%x+std) of the proposed Auto-HeG compared with human-designed and graph NAS models on
high-heter Ophlly datasets. The best results are in bold and the second-best results are underline. Superscript * represents the officially reported results with the same dataset

splits, where Geom-GCN and GCNII do not provide the std; And the remains are our reproduced results if official methods do not test under the same dataset splits.

Methods Datasets Cornell Texas Wisconsin Actor
H2GCN-1* 82.16+4.80 84.86+6.77 86.67+4.69 35.86+1.03
H2GCN-2* 82.16+6.00 82.16+5.28 85.88+4.22 35.62+1.30
MixHop* 73.51+6.34 77.84+7.73 75.88+4.90 32.22+2.34
GPR-GNN 81.89+5.93 83.24+4.95 84.12+3.45 35.27+1.04
Human-designed models | GCNII* 76.49 77.84 81.57 -
Geom-GCN-T* 56.76 57.58 58.24 29.09
Geom-GCN-P* 60.81 67.57 64.12 31.63
Geom-GCN-S* 55.68 59.73 56.67 30.30
FAGCN 81.35+5.05 84.32+6.02 83.33+2.01 35.74+0.62
GraphNAS 58.11+3.87 54.86+6.98 56.67+2.99 25.47+1.32
SNAG 57.03+3.48 62.70+5.52 62.16+4.63 27.84+1.29
Graph NAS models SANE 56.76+6.51 66.22+10.62 86.67+5.02 33.41+1.41
SANE-hete 77.84+5.51 77.84+7.81 83.92+4.28 35.88+1.30
)\ Auto-HeG (ours) | 83.51+6.56 86.76+4.60 87.84+3.59 37.43+1.37

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs." Proceedings of the ACM Web Conference 2023. 2023.
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Experiments of Auto-HeG

-- Low-heterophily Graphs

Table 3: Performance (ACC%z+std) of the proposed Auto-HeG compared with human-designed and graph NAS models on
low-heterophily datasets.

Methods ‘ Datasets ‘ Cora Citeseer Pubmed
GCN 85.69+1.80 75.38+1.75 86.08+0.64
GAT 86.52+1.41 75.51+1.85 84.75+0.51
GraphSAGE 80.60+3.63 67.18+5.46 81.18+1.12
Human-designed models SGC 85.88+3.61 73.86+1.73 84.87+2.81
GCNII* 88.01 77.13 90.30
Geom-GCN-T* 85.19 77.99 90.05
Geom-GCN-P* 84.93 75.14 88.09
Geom-GCN-S* 85.27 74.71 84.75
GraphNAS 84.10+0.79 68.83+2.09 82.28+0.64
SNAG 81.01+1.31 70.14+2.40 83.24+0.84
Graph NAS models SANE 84.25+1.82 74.33+1.54 87.82+0.57
SANE-hete 85.05+0.90 74.46+1.59 88.09+0.42
|| Auto-HeG (ours) | 86.88+1.10 75.81+1.52 89.29:+0.27 J
[ —

s Both high-heterophily and low-heterophily graphs’ node classification results show the superior of
the proposed Auto-HeG to existing human designed GNNs & automated GNNs

Zheng, Xin, et al. "Auto-HeG: Automated graph neural network on heterophilic graphs." Proceedings of the ACM Web Conference 2023. 2023.
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Conventional Model Evaluation

Understanding and evaluating GNN models’ performance is a vital step for GNN model deployment

and serving.
well-trained & fixed Pred. labels  GT. labels
B<x—l
GNN,, f————| GNNg | =~ 7"
with node labels = with node labels T W<V, oo tunodes
r -‘I Ir : . a = # total nodes
: : training : : testing [ ] 8
: : : 1 | Sl
I e e
1 |
(P g | b ] 1
Train Graph G, Test Graph G,

(a) Conventional GNN Model Evaluation

In conventional model evaluation of GNNs, we have:

1) Seen test graph G in the same distribution as the train graph G,

2) Known test graph labels for computing performance metric, e.g., Accuracy (ACC)

For instance,
in financial transaction networks:

GNN model designers: expect their
developed GNNs to excel in identifying

newly emerging suspicious transactions

* Users: ensure how they could trust well-
trained GNNSs to know suspicious

transactions within their own data

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural

Information Processing Systems (NeurlPS), 2023.
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Real-world Model Evaluation

? without node labels well-trained & fixed Pre d.labe.ls
testing [ ] e —> ? NoGT. labels
—_ GNNQ:r — . .
W= :
- X
v
a8
Unlabeled & Unseen B<—>7 A —————
R ; § otal nodes

Test Graph G,

(b) Real-world GNN Model Evaluation

In real-world model evaluation of GNNs, we:

X CAN NOT access the ground-truth labels of the test graph G;e

X CAN NOT compute performance metric, e.g., Accuracy (ACC)

X DO NOT know whether potential distribution shifts from the train graph G,

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural
Information Processing Systems (NeurlPS), 2023. ’
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Test-Time GNN Model Evaluation

Given above scenarios, a natural question, i.e., “GNN model evaluation problem” arises:

In the absence of labels in an unseen test graph, can we estimate the performance of a well-

trained GNN model?

Pred. labelsy GT labels y
Unseen Test Graph T

GNNEvaluator

? without node labels

(a-2) The proposed GNN model evaluation (w/o unseen test graph labels).

— 1
[m—————— ‘ é v 2l .
1 : well-trained & fixed . 7 . :
1 |
: : GNN; inference B<~Y 8 > ACC= - f\t/y:adzs |
I otal nodes
i : ] | ] ;
! 1 ] | : p
S <~ N . Unseen Test Graph T l
(a-1) Conventional model evaluation (w/ unseen test graph labels). : GCN; \
————————————————————— — I
! GAT; >
|
well-trained & fixed ! Graphs AGE; /
* estimation | .
GNNg —» GNNEvaluator |——> ACC~7163% . ?Withoutnodelabels
|
Y ;
|
I
I
I

r
! ACC (T, GCN) :
/, ~ 71.63% |
b e e e e s
ACC (T, GAT)
~ 70.01%

\ ACC (T, GraphSAGE)
~ 69.54%

(b) An applicable case of the proposed GNNEvaluator.

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural

Information Processing Systems (NeurlPS), 2023.
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Definition of GNN Model Evaluation

Definition of GNN Model Evaluation. Given the observed training graph S, its well-trained model
GNN, and an unlabeled unseen graph 7 as inputs, the goal of GNN model evaluation aims to learn
an accuracy estimation model f4(-) parameterized by ¢ as:

Acc(T) = f4(GNN, T), 2)

where f4 : (GNNg,7) — a and a € R is a scalar denoting the overall node classification accuracy
Acc(T) for all unlabeled nodes of 7. When the context is clear, we will use f(7) for simplification.

LF

To solve above problems,

We propose a two-stage GNN model evaluation framework with a “GNNEvaluator”

Note that our principal goal is to estimate well-trained GNN models’ performance, rather than improve the generalization

ability of new GNN models. In the whole evaluation process, the in-service GNN model is fixed

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural
Information Processing Systems (NeurlPS), 2023. *



1
Our Proposed GNNEvaluator

Graph §
F 2 s e 1
1 1 s _~us o) . .
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: ' > GNN; ER— ZS > ) o DiscGraph Set gdisc
1 1 xl .
T tec @@ SIS train
! . \ _— —— fixed - D(") —disc __, 4% T e—@ N — GNNEvaluator
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. ey e GNN; > = o
% i H !
‘ 5 | l o Ydisc 04 i .b i
O | ‘ > ACC > | O | ;
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o Meta-graph Set G,,e¢a @ Discrepancy attributes @) Accuracy labels €) Structures
Stage-1 DiscGraph set construction Stage-2 GNNEvaluator training & inference

Figure.l Overall two-stage framework of the proposed GNN model evaluation with GNNEvaluator

« Stage-1: DiscGraph set construction

incorporating training-test graph discrepancies into DiscGraph node attributes X, structures AY;., and accuracy
labels y&:.

« Stage-2: GNNEvaluator training and inference

GNNEvaluator, train on DiscGraphs and output estimated ACC on the real-world test graph 7.

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural
Information Processing Systems (NeurlPS), 2023. *
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Experiments of GNNEvaluator

The performance of our proposed GNNEvaluator in evaluating well-trained GNNs’ node classification accuracy under all test evaluation
cases and models

Table 1: Mean Absolute Error (MAE) performance of different GNN models across five random

SCCdS. (GNNs are well-trained on the ACMv9 dataset and evaluated on the unseen and unlabeled Citationv2 and DBLPvS datasets, i.e., A—C
and A—D, respectively. Best results are in bold.)

Methods ACMv9—Citationv2 ACMv9—DBLPv8
GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP A
ATC-MC [8] 4.49 840 437 1840 3433 14.00 2196 2420 3030 2406 26.62 2543 . .
ATC-MC-c [8] 2.41 574 467 2200 5141 1725 31.15 3055 30.18 29.71 4581 33.48 5 -
ATC-NE [8] 3.97 8.02 428 1735 3887 1450 2293 2478 30.50 23.74 31.13 26.62 4 Expe rl me ntS On 3 real WO rI d g rap h
ATC-NE-c [§] 444 609 330 2395 4462 1648 3442 2831 27.02 3028 39.28 31.86

Thres. (7 = 0.7) [6] 3264 3581 3363 5076 3528 37.63 959 1214 1430 32.67 39.72 21.68 1 1 1
Thres. (r = 0.8) [€] 2630 29.60 26.18 4925 35.87 3344 263 744 1447 3220 4031 19.41 datasets INn 6 cases pOte ntlal domal n
Thres. (7 = 0.9) [6] 17.56 2134 1638 46.53 36.08 27.58 820 742 1607 3147 4056 2074

AutoEval-G [6] 1894 26.19 26.12 50.86 3240 3090 277 2.54 725 48.68 2995 18.24 Shlft, eaCh evaluatlng 5 mOdels:

GNNEvaluator (Ours) 4.85 411 1223 1014 2220 10.71 11.80 1488 6.36 13.78 1749 12.86

Table 2: Mean Absolute Error (MAE) performance of different GNN models across five random  %* Consistent outstanding performance over all

seeds. (GNNs are well-trained on the Citationv2 dataset and evaluated on the unseen and unlabeled ACMv9 and DBLPv8 datasets, i.e., C—A

and C—D, respectively.Best results are in bold.) G N N m Od e |S an d Casesl
Methods Citationv2—ACMV9 Citationv2—DBLPv8
GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg
ATC-MC [§] 950 1340 828 3551 4340 2202 2257 137 21.87 2924 3520 22.05
ATC-MC-c [§] 6.93 11.75 6.70 3893 5743 2435 33,67 492 2823 30.89 5259 30.06
ATC-NE [$§] 8.86 13.04 7.87 3488 4749 2242 2397 186 2374 2896 39.72 23.65
ATC-NE-C [€] 773 1394 763 41.17 6296 2669 37.16 466 2943 3166 5895 3237

Thres. (T = 0.7) [6] 3733 36.61 31.68 5891 3433 39.77 10.70 23.05 1274 34.60 3829 23.88
Thres. (T = 0.8) [£] 29.62 2895 2277 5748 3453 34.67 565 1501 7.61 3436 3843 2021
Thres. (7 = 0.9) [6] 19.59 19.06 11.37 55.72 3456 28.06 10.65 8.28 8.07 34.00 38.44 19.89
AutoEval-G (8] 23.01 3124 2674 59.66 35.02 2828 257 1652 696 1920 3224 2459

GNNEvaluator (Ours) 545 853 9.61 29.77 2852 1638 1164 702 558 646 2287 10.71

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural
Information Processing Systems (NeurlPS), 2023. b
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Futures of Automated Graph MLOps

C. [Data + Model Level] Good generalization and transfer learning abilities of both graph data
and models

D. [GNN Application Level ] Continuous evaluation, integration, deployment, and monitor of
GNN models

CRICOS: 0023E | TEQSA:



W

ALISHIAINN HLI4dIdO

Futures of Automated Graph MLOps

______________________________________________________________________________________________________________________________________

A [ Graph Data Level] In-depth exploration, understanding, and management of various graph

data types and characteristics

@ ©®
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(b) Inference uncertainty on unseen dynamic graphs
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Futures of Automated Graph MLOps

v
RO
p—
N 3 % N K
NN N S {

.

N

]
LXXXX1

\ . o - - — 7/ \ _______ [ — -
C, : Relation-aware C;: Neighbor Aggregation C,: Entity-aware
Message Filtering Embedding Filtering

Cat
Linear Combination & Mapping
- Zout Hyyt |
@ @ @ - III I III

Zheng, X., Zhang, M., Chen, C., Li, C., Zhou, C., & Pan, S. (2022, November). Multi-relational graph neural architecture search with fine-grained message passing. ICDM’2022
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" Unobserved Shifts:

Futures of Automated Graph MLOps

e o o o o o e e -
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3 . . . 1 | . . . !
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.

variable supervision

modelr,

i s 6 *-e

: -%ﬁ: .::;' ¢, - ':::o o;‘o'.'o g ey
e N2 .

unlabeled

o oo % > o f: ose -
ee ‘_‘ I_‘ .&: ? : oo —btmmmg model p—»md’mg ‘gz
.. .

&2

20 4

i T Tz Ty
Training graph (source) Test graph (target) Test graph (target)
: Training graphs along time Test graph
Training stage Inference stage i Training stage Inference stage
. ¥, = Class1 . Y, = Class2 . Y; = Class3 . Unlabeled nodes

Unknown test-stage data, Graph Out-of-distribution Learning
limited supervision

[ = = = J )
. ’ ® @ ::: training inferring _, ’— ‘, .;
¢® oo . [ R J ‘ ) model we—) I

Training graph In-distribution (ID)  Training graph (others) Test graph Out-of-distribution (OOD)

Fig. 1: Overview of graph data distribution shifts and corre-
sponding graph learning methods.

® shiftclass2 @ shift class3

Training stage Inference stage ;

Wu, M., Zheng, X., Zhang, Q., Shen, X., Luo, X., Zhu, X., & Pan, S. (2024). Graph Learning under Distribution Shifts: A Comprehensive Survey on Domain Adaptation, Out-of-
distribution, and Continual Learning. arXiv preprint arXiv:2402.16374.
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Futures of Automated Graph MLOps

D. [GNN Application Level ] Continuous evaluation, integration, deployment, and monitor of

GNN models

------ = (1) NoGT. labels
i
H
Test Error + ——————
Test Graph Gte E # total nodes
u (2) Diverse graph !
with node labels (" distribution shifts x
! 1 %
: : * Pred. labels
training
! I—>| GNNg; el 1 1 X BN
1 1
e = - ! well-trained & fixed
Train Graph G,

(3) Inaccessible training graph

(a) Demonstration of Online GNN Evaluation

? without node labels

Test Graph G,

GNNy:,

Online GNN Our Proposed
: LeBed Score
Evaluation
well-trained & fixed

(b) Our Solution for Online GNN Evaluation

\ 4

Figure 1: Illustration of the proposed online GNN evaluation problem and our solution.

Zheng, X., Song, D., Wen, Q., Du, B., & Pan, S (2024). Online GNN Evaluation Under Test-time Graph Distribution Shifts. In The Twelfth International Conference on Learning

Representations, (ICLR).
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Thanks!

Automated Graph Machine Learning Operations (MLOps) Workflow:

A Data-Centric Perspective

Dr. Xin Zheng

Griffith University
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